Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of RIMS apparatus for isotope analysis of Calcium nuclear waste materials

Miyabe, Masabumi; Oba, Masaki; Kato, Masaaki; Wakaida, Ikuo; Watanabe, Kazuo

Journal of Nuclear Science and Technology, 43(4), p.305 - 310, 2006/04

 Times Cited Count:13 Percentile:65.77(Nuclear Science & Technology)

We are developing an resonance ionization spectrometric apparatus aiming at an analysis of a radioactive isotope of calcium ($$^{41}$$Ca) in nuclear waste materials. The developed system consists of the reference laser whose frequency was locked on a Doppler-free absorption line of 85Rb and the computer-controlled fringe offset lock system which transfer frequency stability of the reference laser to slave lasers for Ca excitation. With heterodyne spectroscopy and laser induced fluorescence spectroscopy of Ca, it was confirmed that the developed apparatus was suitable for resonance ionization spectrometric analysis.

JAEA Reports

Measurement of doppler effect on resonance materials for ROX fuel using FCA

Ando, Masaki; Nakano, Yoshihiro; Okajima, Shigeaki; Kawasaki, Kenji

JAERI-Research 2003-029, 72 Pages, 2003/12

JAERI-Research-2003-029.pdf:3.41MB

The objectives of this study is to clarify calculation accuracy for the Doppler effect of the resonance materials; erbium (Er), tungsten (W) and thorium (ThO$$_{2}$$). Doppler effect measurements were carried out in a fast neutron spectrum (XX-2 core) and in an intermediate neutron spectrum (XXI-1D2 core) by the sample-heated and reactivity worth measurement method up to 800$$^{circ}$$C using FCA. The experiment was analyzed with the standard analysis method for fast reactor cores at FCA with the use of the JENDL-3.2. The SRAC system was also used to investigate the calculation accuracy of the system and to compare it with that of the FCA standard analysis method. The standard analysis method underestimated for the XX-2 core and agreed the experiments within the experimental errors for the XXI-1D2 core. The analysis with the SRAC system gave smaller values by 3%$$sim$$10% for the Er sample and bigger values by 2%$$sim$$5% for the W sample than the standard analysis method.

Journal Articles

Doppler effect measurement on resonance materials for rock-like oxide fuels in an intermediate neutron spectrum

Ando, Masaki; Nakano, Yoshihiro; Okajima, Shigeaki; Kawasaki, Kenji

Journal of Nuclear Materials, 319, p.126 - 130, 2003/06

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Doppler effect experiments on resonance materials for ROX fuels were carried out to examine the calculation accuracy in the intermediate neutron spectrum using Fast Critical Assembly (FCA) at Japan Atomic Energy Research Institute. This study is the second phase of a series of the Doppler effect experiments on the resonance materials, which is following the measurements in the fast neutron spectrum. The Doppler effect was measured as the sample reactivity change between the heated and unheated samples. The cylindrical samples of the resonance materials such as erbium (Er), tungsten (W) and thorium (ThO$$_{2}$$) were used. The sample was heated up to 800$$^{circ}$$C at the center of the FCA core. The Doppler effect measurements were analyzed using the SRAC 95 code system with the use of JENDL 3.2. The calculated values agreed with the experiment within the experimental error for the W and ThO$$_{2}$$ samples, while the calculation overestimated the experiment for the Er sample about 10 %.

Journal Articles

Nuclear magnetic resonance investigations of lithium diffusion in Li$$_{2}$$O, Li$$_{2}$$SiO$$_{3}$$ and LiAlO$$_{2}$$

*; ; ; Konishi, Satoshi; ;

J.Chem.Soc.,Faraday Trans.,I, 79, p.1205 - 1216, 1983/00

no abstracts in English

Oral presentation

Characterization of nuclear material by neutron resonance transmission analysis

Schillebeeckx, P.*; Alaerts, G.*; Becker, B.*; Paradela, C.*; Heyse, J.*; Kopecky, S.*; Vendelbo, D.*; Wynants, R.*; Harada, Hideo; Kitatani, Fumito; et al.

no journal, , 

The appearance of resonance structures in neutron induced reaction cross sections are fingerprints to study properties of materials and objects. Resonance structures are the basis of an analytical technique, i.e. Neutron Resonance Transmission Analysis (NRTA), which is being developed at the time-of-flight facility GELINA of the JRC-IRMM to characterize special nuclear materials. NRTA is based on the analysis of dips in a transmission spectrum that is obtained from a measurement of the attenuation of the neutron beam by a sample. To apply NRTA for the analysis of particle like debris samples of melted fuel produced in a severe nuclear accident is not evident. From this work one concludes that the accuracy of the results is strongly affected by the characteristics of the samples, in particular by the presence of neutron absorbing impurities, e.g. $$^{10}$$B, and the variety in shape and size of the particle like debris samples. To account for these effects, improved data analysis procedures and interpretation models have been developed. These procedures and models will be presented and validated by results of measurements carried out at GELINA. It will be demonstrated that the relative amount of fissile material can be derived absolutely with an accuracy better than 2% without the need of calibration samples, even in the presence of strong neutron absorbing materials.

Oral presentation

Anticipations of NRF-based NDA of nuclear material using monochromatic $$gamma$$-ray beams

Seya, Michio; Hajima, Ryoichi*; Hayakawa, Takehito*; Koizumi, Mitsuo

no journal, , 

The NRF-base NDA using monochromatic $$gamma$$-rays would be used in nuclear security for secure detection of NM in thick shield and also for precise checking of interior structures of detected / suspicious objects. This NDA also would be used in nuclear safeguards for precise quantification of U/Pu isotopes in high radiation background, such as spent fuel assemblies / melted fuel debris in a canister. It is also useful for precise measurement of quantities of minor actinide isotopes in ADS (Accelerator Driven Sub-critical System; for transmutation of long-half-life minor actinides (MA)) fuels before and after irradiation in the ADS reactor core. In this presentation, we show actual NRF-NDA methods for these objects.

6 (Records 1-6 displayed on this page)
  • 1